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SUMMARY 

A theoretical method has been developed for determining the optimum span 

load distribution for minimum induced drag for subsonic nonplanar configura- 

tions. The undistorted wing wake is assumed to have piecewise linear variation 

of shed vortex sheet strength, resulting in a quadratic variation of bound cir- 

culation and span load. The optimum loading is obtained either through a 

direct technique, whereby derivatives of the drag expression are calculated 

analytically in terms of the unknown wake vortex sheet strengths, or through 

use of Munk's criterion. Both techniques agree well with each other and with 

available exact solutions for minimum induced drag. 

INTRODUCTION 

One way in which to improve aircraft performance at subsonic cruise is to 

utilize nonplanar lifting surfaces designed for minimum induced drag. At least 

two theoretical design methods have been developed for this purpose: one by 

Lamar (ref. 1) and another by Feifel (ref. 2). Ishimitsu (ref. 3) uses Feifel's 

technique for the design of winglets. Both of these theories use vortex lattice 

representations on the wing with trailing filaments extending streamwise into 

the wake. Feifel notes in reference 2 that the discretized vortex lattice 

technique can lead to appreciable errors in local velocity, and hence in the 

span load, for nonplanar configurations in the vicinity of an abrupt change in 

dihedral. Even though the effect on total coefficients is negligible, camber 

solutions in such regions can be in error. One way in which to minimize such 

problems is to assume a more complicated functional form of the bound circula- 

tion than piecewise constant. This avoids the isolated singularities of 

strength (r)-1 which occur in vortex lattice representations, at the expense of 

more elaborate analysis. Three previously developed methods for improving the 

induced drag computation are those of Loth and Boyle (ref. 4), Goldhammer 

(ref. 5), and Clever (ref. 6). 

Loth and Boyle developed a theoretical Trefftz plane analysis of the 

wake of a single planform where the wake vortex sheet strength was assumed 

piecewise linear and continuous. However, the numerical results from 

reference 4 are seriously in error due to errors in the implementation of 

this method. More recently Goldhammer and Clever have developed near-field 

analysis codes that assume piecewise linear variation of singularity strengths 
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in the chordwise direction. Reference 5 assumed a piecewise constant span 

load, leading to a discrete vortex representation of the wake, while reference 

6 assumed a piecewise linear variation of span load, resulting in piecewise 

constant wake vortex sheet strengths. The current work utilizes the theo- 

retical model developed by Lath and Boyle, where the shed sheet strength is 

assumed piecewise linear, leading to quadratic variations of bound circula- 

tion and span load. 

A Trefftz plane analysis of a wing wake is performed using an assumed 

piecewise linear functional form of the wake strength, and solutions for the 

bound circulation for minimum induced drag are obtained using two optimi- 

zation techniques. First, Munk's criterion (ref. 71, applied at each wake 

segment midpoint, is used, similar to the technique developed in reference 4, 

but with important analytic differences in the handling of singularities at 

the ends of adjacent wake segments and at the wing tips, as well as the 

inclusion of variable wake segment spacing. Second, a direct optimization 

technique as discussed in reference 1 is developed for the assumed wake 

model. Results for both techniques are then compared with available exact 

solutions from Mangler (ref. 81, Cone (ref. 91, Lundry (ref. lo), and 

Lundry and Lissaman (ref. 11). 

SYMBOLS 

A 
prk 

A,B,D,S,F,G,J,K,R,T,U,W 
A',D',F' ,G',J',K' 

Al.., A2.., A3.., AI+.. 
71 13 =I 17 

b 

C L 

cD 

d 

D ij 

,. 
Gi,Gi,G. 

1 

matrix of coefficients in direct 
optimization technique 

constants appearing in normal wash 
expression (eq. 4) 

integrals appearing in normal wash 
expression (eq. 4) 

wing span 

lift coefficient 

induced drag coefficient 

vertical extent of circular arc 

induced drag on segment i due to 
induced velocity of segment j 

variables containing unknown shed sheet 
strengths appearing in drag expression 
(eq. 7) 
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h ij 

h!. 
13 

11. .rIz. 13 1,~ I4 l,j' i,j' i,j' '5i,j' 

I6 i,j 

k 

KlrKzrK3 

L 

N T 

PrQ 

R ij 

R!. 
17 

S ref 

6 

.s 

u 

W 

W n 

w;: . 
rl 

W’ 
n,j 

W 
0 

distance between influenced point on 
segment i and influencing point on 
segment j 

distance between influenced point on 
segment i and influencing point on image 
of segment j 

integrals appearing in drag coefficient 
expression (eq. 7) 

induced drag efficiency factor 

constants appearing in integrals on p. 16 
and p. 28 

vertical extent of endplate or fence 

number of wake segments on one half of wing 

factors in normal induced velocity expressions 

projection of distance h.. 
13 

onto the plane 
of influenced segment i 

projection of distance h!, 
13 

onto the plane 
of influenced segment i 

reference wing area 

local wake segment coordinate 

wake segment half width 

free stream velocity 

total induced velocity 

normal wash velocity 

normal wash velocity induced at point 4 = d 
on segment i due to segment j i 

normal wash velocity induced at point b = .cS i 
on segment i due to image of segment j 

constant appearing in Munk's criterion 
normal wash velocity expression (eq. 8) 

Y spanwise coordinate 



z 

fj=d 
b/2 

Y 

r 

0 

0 
ij 

Subscripts 

i 

j 

vertical coordinate 

parameter for circular arc spanwise camber 

trailing vortex sheet strength 

bound circulation along the planform 
perimeter 

average bound circulation 

nondimensional spanwise coordinate 

Lagrange multiplier 

fluid density 

angle between direction of h.. and 
y-axis 17 

dihedral angle 

influenced point 

influencing point 

normal component 

dununy index 

value at y = 0 

Superscripts 

image segment quantity 

average quantity, or body axis 
coordinate 



THEORETICAL DEVELOPMENT 

To effect a solution for minimum induced drag using the assumed wake model, 
the standard expression for induced drag evaluated in the Trefftz plane, given 

1 
CD = 7 

ref / 

b 
z r WI1 1 

TJ u cos $I dy 

b -- 
2 

can be used. To develop expressions for the individual quantities in the 

integrand, i.e. bound circulation and induced normal velocity in terms of 

the wake vortex sheet strength, consider a view from downstream of the 

undistorted wing wake as shown in figure 1. The wake is broken up into 

N T 
linear segments which can be of varying size. Uniform and cosine 

segment spacing are investigated in the current study. From the law of 

Biot-Savart, the total induced velocity at a point on wake segment i, located 

a distance n i from the center of that segment, due to an increment of 

shed vorticity from segment j, located a distance n 
j 

from the center 

of that segment, is equal to 

y(n.)db. 
dw(6i,6j) = 7 2Th 

ij 

where 

h ij = (Yij 

I 
- bj cos I$. + bi cos $i)2 

3 
l/2 

+ (z.. -b 
=I j 

sin $. + bi sin $iJ2 
3 

and 

Y. * 
13 

= Yi - Y.; Z = z. - z. 
3 ij 1 7 
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Refer to figure 1 for details of geometry. The normal induced velocity is 

dw,:(Ai,Aj) = dw(Ai,nj) cos($i - 0. .I 
13 

R.. 
= dw(Ai,Aj) 5 

ij 

where 0. . is the dihedral angle between points located distances b and 
11 i 

a 
j 

from the centers of segments i and j. R.. 
13 

is the projection of h.. 
17 

in the plane of segment i such that 

R 
ij 

= sin $I~(z,, - 6. sin $. + A 
17 3 I 

i sin $i) 

+ COS 4i (y. . - ‘j ‘OS 4’ + “i ‘OS 4i) 
17 7 

Thus, the normal wash at d i 
on segment i due to segment j is 

+S 

W* . (bi) = & 

/ 

j y(bj) cos +i'Yi. -b cos+.+b 
i 

cos +i) + sin +i(zi. - b. sin $. + bi sin 0.) do. 

n #I 
l - (1) 

-5. 
3 

('ij - bj cos + 
j 

+ bi cos +i)2 + (2.. - bj sin 0. + bi sin $i)2 
13 3 

Next, consider the normal wash at a distance 6 
i 

from the center of segment 

i due to the image of segment j, located on the right half of the wing. 

This normal wash, denoted by a prime, equals 

dw;(Ai,Aj) = 
-Y(n!m; cos($. - a! .) 1 17 

2lr h! . 
17 

-y(A!)dh! RI. 
= 717 

2TT 
[h;j12 

where 

R! . 
17 

= sin @i(z!. - 6. sin $J. + hi sin $i) 
17 I I 

+ cos oi (Yij + A. cos 4 * + Ai cos tQ 
I I 

[hij12 = (ylj + nj cos $j + ai cos @'i)2 

+ (z! 
lj 

- nj sin $. + Ai sin $i)2 
I 
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The total induced normal wash at point i due to the image of segment j is 

then 

w' . (bi) = 2 
"4 

+'j "_s. fik'y;j T 4. ~0s Oj + bi cos +i) + sin +iLzf. - b. sin 4. + bi sin L+~) db. 

(yfj + bj COS +j + b. cos +i)2 + (zij - bj sin +. + b. Sin Oil2 
' (2) 

1 3 1 

where y! 
Ij 

=y +T and z!. = z... due to both 
11 11 

The normal wash at point i 

segment j and its image, equal to w* n j (Ai) + WA, j (hi), is then 
I 

The shed vorticity distribution, assumed piecewise linear as shown in 

sketch a, is defined for segment j as 

+ Y. 
Y(hj) = 

'j+l 
2 ’ + fi l yj+l - yj 

S. 2 
I 

‘(*j) ” \ yj+l 

/ \ b n- 
0 I 

-s . I s. 3 

Segment j 

Sketch (a) 

where y. 
I 

is the value of the shed vorticity between segments j and j-l. 

The range of applicability of each equation for y is -s. to s.. Note 
I I 

that this assumption leads to piecewise quadratic distributions of bound 

circulation and span load. 

Then the normal wash at bi due to segment j and its image is 
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+ 'j+l - 'j 
2 #; y-;;j -I," ;;Y$; 

j 

Constants are defined as 

R ij 
=A+E4.+ni=A'+Bb 

3 I 

where A = Yij cos $i + 2.. sin $J~ 
13 

A' =A+hi 

B = -COS 4. cos $i - sin 9. sin $i = -cos($. - 
7 3 3 

$i) 

R!. 
13 =D+E6.+"i=D'+Eb I 3 

where D = Ylj cos$ +z!.sin9i i 11 

D' =D+4. 
7 

E = cos $. cos $i - sin $. sin +i = cos($j + $i) 
3 7 

hzj = 6; + (F + 2Mi)& + (G + 29 + A;) 
3 

= A; + F'a. + G' 
3 

where F = -2(y.. cos 
17 

4. + 2.. sin 
7 17 

$j) 

F' =F+2B4 
i 

G = 2.. 2 + 
11 

y.. 2 
17 

G' =G+ 2A.bi+6; 

and 

(3) 

(hfj)’ = ii; + (J + 2ELSi)& + (K + 2Dhi + 4;) 
3 

= 6; + J'n. + K' 
7 

8 



where J = 2(y!. cos 9. - z!. sin Oj) 
11 I J-3 

J' = J + 2Ehi 

K =(z' ij)2 + (Yjj12 

K' =Kf 2D$+4: 

The normal wash is now written as 

'j+l + Y. 'j+l 
' (Alij + Azij) + 

- Y. 
W n j ($1 = 2 2 ' (A3ij + Aqij) (4) 

I 

where 

/ 

+s . 
1 7 A' + B/3 

Alij = z 
j a. 

A? + F'b + G' 3 
-s . 

7 3 j 

1 
A2i-j = -- 2x 

I 

+s * 
3 D' + U 

j dh. 
A: + J'b + K' ' 

-s. 3 j 
3 

and 

+s 
1 j 

A4.. = - - 
I 

D'dj + E6? 

=I 2iTs. 
a. 

3 ' 
-s. 

A; + J'n. + K' 
3 

7 

The above integrals contain constants, none of which contain a.. 3 
They can 

be integrated analytically to give 

Alij = &{(A' - +I? + $(&Is; + F'sj + G'I 

- b~ls; - F'sj + G' 1 



where 

’ = J---& ( tan-‘[ ,,G:;F::;l/+ tan-1[++ 

for 

4G' - Fv2 # 0. 

2 
If 4G' - F" = 0, then P = F, _ 2s 

2 
- 

j 
F'+2s - 

j 

Next, 

((D' - y)Q + 5 (&Is; + J'sj + K'[ 

11s: - J's; + K' 

where 

J J 

Q= 
&I&T) tan-1 

i 

l- 
J' + 2s. 

(4K' _ J'2;1/2 

J' - 2s. 
- tan-l 

(4K' '_ J'2;1/2 

for 

4K' - J" # 0. 

If 4K' - J" = 0, then Q = J, 
2 2 

-2s -J'+2s - 
j j 

Also, 

1 
A3.. = - 

-A'F' + BF" - 2BG' P + 2Bs 
11 2lT.s 

j 
2 j 

+ t' ;"')@s; + F'sj + G'I - Lnls$ - F'sj + G'I 

11 

10 
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and 

A4.. 
-1 -D'J' + EJ" - 2EK' 

= - 13 2Trs. 2 
I 

Q + 2Esj 

+(D' -2J'E)(n[s; + J'sj + K'I - bI1.s; w J'sj + K'I 

11 

Note that 

4G' - F" = IR + TAiI 

where 

R=2(y..sin$ -z 
13 j ij co.5 $j) 

T = 2 sin(+ - I$~) 
j 

and 

&T-F = Iu + WAiI 

where 

u = 2(y! 
lj 

sin 4. + z!. cos $j) 
7 13 

W = 2 sin($j + oil 

Now, written out in terms of the unprimed constants and the variable 

a. I 1 the integrals appearing in equation (4) for the normal wash are 

Alij = $ 
- y + (1 - B2)&) F + 2s. + 2Brl 

i 

IR + Tni( 1R + T&i 1 
- tan-l 

F - 2s. + 2Mi 
+Fs. +G 

IR + ThiI 3 11 



-... _ --------. 

+ 2(A + BSj)ni + 611 - “1’; -FSj ’ G 

+ 2(A - Bsjhi + A;] 
1 

I 

_ tm-'[" -l,'~,f;"~)- -& ~~1s; + JS~ + K 

+ 2(D + ESj)~i + nfl - “1s; - Jsj + K 

+ 2(D - Esj)hi -f- ^;I 

I 

1 (BF~ - AF - 2BG) f (-F - 

A3ij = - 

6AB + 4B2F)Cri + (4B3 - 4B1d: 

2lls 2 1 j 
F + 2s. + 2Bb 

i 

I 

-tan-l 
. IR+T~jI 

'F 
- 2sj + 2Bhi 

- IR + Tnil I) 
B 

+ -rr + 

- BF + (1 - 2B2)hi 

2 his; + Fsj + G 

+ 2(A + BSj)Ai + h,?l - LHIs; - F’S* + G + 2(A - Bsj)*i 3 + A;\ 

12 



I[ 
- DJ - -1 (EJ~ 

A4.. = - 
2KE) + (-J - 6ED + 4E2J)di + (4E3 - 4E)d; 

- . 
13 2lTs j 2 1 

2 J - 2s. + 2E6 
. 1 [ -tan-l i 

Iv + W&l Iu + wq 

E 1 D - EJ + (1 - 2E2)h. 
= ^--- 

IT 27Ts 
j 

2 &Is; + Jsj + K 

+ 2(D + Esj)di + cS;l -&Is; - Js. + K + 2(D - Esj)hi + hfl 
7 

The four integrals above are now used to evaluate the induced drag on 

segment i due to the induced velocity at the wing due to segment j by 

integration of the product of bound circulation and normal wash. The induced 

drag for each linear segment is of the form 

J 

+s. 
D = ij = p r (hi) 

--s i 

and thus, the corresponding drag coefficient is 

D +s 
C ij 1 i my 

= 1 
=-- 

wn, * (Ai) 
D,ij 

Z ""ref 
S ref U 

-S 
(') 

U dhi 

i 

The bound circulation is found by the integration of the shed sheet strength 

from the tip to the desired location, such as 

(5) 

Iwi) = 
s 

'i 
y(b)dA = robsi) + 

J 
"i 

Y (Aphi. 
tip --s. 1 

That is, 

13 



r(hi) = ro(-si) + * 
'( 

+('i+li "i 

Yi+l + 3yi ) + p+y 'i), 

i 62 i 
2si 

where ro(-si) is the value of the bound circulation evaluated at a = -s.. 
i 1 

Specifically 

i-l 'k 

ro(-si) = C 
k=l / 

v(ak)d6k = ylsl + 

-Sk 
p(sp + 'p-1) + 'i'i-1 

Then the induced drag coefficient on segment i due to segment j and its 

image is given by 

C 

+ ('j",, yj)'A3ij + AbijiJdai 

Define 

Gi = ro(;si) + 2 bi+, + ,,$ 

Y 
E = i+l + 'i Y*+l + Y. 

i 2u 
;G= J 

j 2u 

e. Y . - Y. 
G = i+l -Yi 

i 2u 
; G. = 'j+l 

3 2u 

(6) 
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so that 

- A 
C D,ij = + 

ref 
+ GiGj12. 

.,j 
+ aiEj13. 

.,j + GiGj14' i,j 

+ $Gj15. 
.-. . 

.,j + GiGj16 * .,j 
) 

(7) 

where 

/ 

+s. 
1 

Ili,j = (Al.. + A 
17 

2ij)d& 1 
-Si 

12. = 
l,j 

(A +A 3ij 4ij)dA. 1 

s 

+Si 

'3i, j = Ai&.. + A2 
13 ij'~. 1 

-si 

/ 

+Si 

'4i,j = 4i(A3ij + A4 ij)d& 1 
-s. 1 

'5i,j = 
(Al.. + A4 

62 =I i 2s i 
' dAi 

s 

+Si 

16. = 
.,j 

(A3ij21 A4ij)d, 
i 

-Si i 

These integrals with respect to 6 i are evaluated analytically using 

the MACSYMA symbolic manipulation language (ref. 12) as detailed in the 

Appendix. The following integrals require special consideration: 

1. Integrals of the type 

s 

+Si 

6; &l-4? + Eb + Did6 
1 i i 

-Si 

n = 0,1,2,3 
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are evaluated exactly except where a logarithmic singularity occurs, i.e., 

at the endpoint. There, the singularity is omitted from the range of integra- 

tion. An analytical justification for the omission of such singularities has 

not yet been found. Instead, numerical studies have indicated that the omitted 

range can be varied from (low7 ) (si) to (1O-3) (si) and still not affect the 

solutions for bound circulation or induced drag to four significant figures. 

This therefore provides some numerical justification for the restricted 

range of integration. 

2. Integrals of the type 

\ 

/ 

4-S. 
1 

-1 
c + 2B6 

tan i n = 0,1,2,3,4 
-s i (R + Tnil (R + Tdi( 

1 ddi 

are not generally integrable analytically; hence, they have been replaced by 

approximate integrals of the type 

/ 

+Si 

n;(Kln; + K& + K3) 
dh 

-Si \R + Thil i 

which are then integrable analytically. The constants Kl, K2, Kg, are 

chosen so the quadratic exactly equals the original inverse tangent function at 

'i 
=rs 

i 
and zero. When T = 0 and R # 0, the original integral is integrated 

exactly. If both R and T equal zero, the remaining finite integral is 
of the form 

/ 

+Si 

c + 2Ba d-5 

i i 
-Si 

which can also be integrated analytically. For these three types of integrals, 

the denominator is checked for singular behavior. If singularities are found 

to occur, they are excluded from the range of integration. Again, numerical 

studies have shown that this does not affect the solutions for r or induced 

drag. Such singularities are found to occur only at the wake segment endpoints 

and only when considering the velocity induced by one wake segment on an 

adjacent segment. 
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OPTIMIZATION 

Using Munk's criterion (ref. 7) which states that 

W n 
GGq=w 0 

= constant, (8) 

a system of N T linear equations is developed for the unknown shed sheet 

strengths, by equating the normal wash at each segment center to cos I$ on 

that segment. That is, following the techniques of references 4 and 13, 

'j+l + Y. 7 'j+l - Y. 
2 2 ')~3ij + A4ij 

In the present formulation it has been assumed that the shed sheet strength on 

the wake centerline, YNT+l equals zero. The resulting shed sheet strengths 

are scaled by the constant w . The ratio of w 
0 0 

to the free stream speed is 

calculated from an evaluation of the lift coefficient. That is, 

Once the optimum shed sheet strengths are found, the drag is calculated 

directly as described in the previous section. A drag efficiency factor is 

found, defined as the ratio of (CL2/aA) for a planar wing of equal span to 

the calculated induced drag for the nonplanar configuration. 

An alternative optimization technique which has been developed is to solve 

directly for the shed sheet strengths by writing the drag coefficient explicitly 

in terms of the unknown y's, as in the previous section, and finding expres- 

sions for the derivatives of C D with respect to the unknown scale factors. 

With 
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where as in equation (7) 

1 ,. A 
C =- 

D,ij Sref 
GiGjIl. 

I,j + GiGj12' .,j 
+ EiGj13. 

.,j 
+ ciGjC+. 

i,j 

,. ,. ,. 
+ GiEjI,. 

.,j + GiGj16' l,j 

it is necessary to calculate terms 

acD - for p = l,......, NT 
ay P 

The following terms must be considered: 

j=P - 14. 
IrP 

ac 1 . . 1 
DrlJ j=p-1 1 _ -- 
ax 0 S ref 

[ G i - 
2 

UP 
,. 

( Il. 1,P-1 
+ 12. 

IrP-1 

i,p-1 + 16. 
IrP-1 

ac ., 

' ~~~i=p = ~ [~p-l + ~)('jIlp,j + 'jI'p,j 

,. ,. 
+ G.14 7 Plj 

-GI 
j 5plj 

- G.16 
3 plj )I 

13. IrP-1 
+ IL+. 

IrP-1 
1 
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i=p-1 1 A 
=- 

S G.11 
7 P-l,j 

+ G.12 
3 p-l,j 

G.13 
ax 0 ref 7 p-l,j 

UP n ,. 
+ G.14 7 p-l,j 

+ G.15 
7 p-l,j 

+ G.16 
7 p-l,j )I 

= .& [tp + 'p-1)(GjIlp+m,j + 'j12p+m,j)]' m ' 1 

The lift coefficient constraint is satisfied through use of a Lagrange 

multiplier in the objective function, so that the function to be extremized 

becomes 

N N 

2 2 c' ‘D,ij 
i=l j=l 

- cL 

Each equation in the optimization system can then be written as 

A 
p,kYk 

+ xc 
L,P 

= 0, p=l, . . . NT 

where 

A p,k = & $ 'g(Ilp+rn,k - 12p+m,k + 'lp+m,k-1 

+ I2 p+m,k-1 )I 
+ +,-1 + +p)("p,k + ‘lp,k-l - ‘zp,k + ‘zp,k-l) 

p,k + I3 ptk-1 - 14 
ptk 

+ 14 ptk-1 - I5 p,k 
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- 15 p,k-1 + I6 prk 
- 16 p,k-1 

s -1 +-$-- 11 
( p-Irk 

-I- I1 p-l,k-1 - I2 p-l,k + I2 
) 

p-l,k-1 

+$ I3 
I 

p-l,k + 13 p-l,k-1 - 14 p-ltk + 14 p-l,k-1 -t 15 p-1,k 

+ 15 p-l,k-1 - 16 p-1,k 
+ 16 p-l,k-1 

1 

+$ 13 
1 

- I6 
k,P + 13 - 15 

k,p-1 
- 14 

krP 
+ 14 k,p-1 - 15k,p k,P-1 + 16k,p k,P-1 I 

+$ 13 
1 k-l,P + 13 k-l,P-1 - 14k-l,p + 14k-l,p-1 + 15k-l,p + 15k-l,p-1 

- 16k-1,p + 16 k-l,p-1 

+ $ kk + ‘k-1) ;; &+m,p + "k+m,p-1 - "k+m,p + "k+m,p-I)1 

And, since 

8 
C =- 

L 'ref I 



then 

8 =c =- 
Lrp 'ref 

s2 p-l p-l 

8 +- 
S ref 

cos @p+mSp+m)(Sp + ‘p-1) + cos 'pspsp-1 

The (NT + ljth equation satisfies the lift coefficient constraint: 

2 CLp- 

I 

p=l ' 
IL.-, =o 
U L 

I 

RESULTS AND DISCUSSIONS 

The theoretical development has been implemented in an FORTRAN computer 

program which is operational on a CDC Cyber 173 machine, but it is not 

currently documented or available to outside users. A measure of the conver- 

gence, accuracy, and effect of segment spacing for the two optimization 

procedures is shown in figure 2. The induced drag coefficient calculated 

from direct integration of the drag expression obtained from the shed sheet 

strength values is compared with the exact result for a planar wing. Results 

are shown in terms of an efficiency factor, k, which is defined by Corle 

(ref. 9) and Lundry (ref. 10) as 

k= 
CD exact planar wing 

CD calculated 

It is seen (note the stretched scale) that for both optimization techniques, 

k rapidly approaches the desired value, 1.0, as the number of wake segments 
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increases. Induced drag efficiencies for the direct optimization technique 

are very close to those calculated using Munk's criterion. However, as seen 

in figure 3 for N T = 10, there are slight differences in the shed sheet 

strengths near the wing tip which are especially noticeable for equally spaced 

wake segments. Results similar to those shown in figure 3 indicate that 

the behavior of solutions for NT = 25 and 50 is similar to those for 

N 
T 

= 10, except the y values lie closer to the exact distribution. Note 

the dramatic improvement in the representation of the wake vorticity distri- 

bution that is achieved using cosine spacing of the wake segments. Since 

the two optimization techniques yield nearly identical results, the remaining 

comparisons of the current theory with previous work will display only the 

Munk criterion optimization results. 

In figure 4 induced drag efficiency factors for a planar wing computed 

using the current theory are compared with similar results obtained using a 

discrete trailing vortex Trefftz plane drag optimization program developed by 

J. R. Tulinius, B. B. Gloss, and J. L. Thomas of the NASA Langley Research 

Center using the method of reference 14. The error in the present theory 

with N T = 10 is 1 percent with equal spacing and 0.2 percent with cosine 

spacing. This error using equally spaced segments is seen to be approximately 

one-fourth to one-fifth the error in efficiency obtained using the technique 

of reference 14. Errors for the current theory using cosine spacing are five 

times smaller still. The bound circulation values calculated from the Munk 

criterion solution shed sheet strengths are compared with the exact elliptical 

distribution in figure 5 for NT = 10 and 25. Errors in calculated r values 

are even smaller than any errors in y. 

Optimization results for nonplanar configurations are compared with exact 

solutions in figures 6, 7, 8, and 9. The k values for a nonplanar configura- 

tion composed of a flat wing with a vertical endplate are compared in figure 

6 with those of Lundry and Lissaman (ref. 11). Results shown are from the 

downwash criterion optimization using NT f 30, with the wake segments 

distributed nearly uniformly on the wing and endplate and $ = 89.9O, and with 

cosine spaced segments and 4 = 89.7'. The endplate is only approximately 

vertical to avoid numerical difficulties at 4 = 90“. The k values are 

somewhat sensitive to the value of (I chosen, but at (I = 89.7O with 30 cosine 

spaced wake segments the accuracy of the present method is comparable to the 
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method of reference 14 using'100 equally spaced discrete vortices. Note the 

relatively large error at e/s = 0.2 for equal spacing. 

In figure 7 the induced drag efficiency for a wing with constant nonzero 

dihedral ((I = 30') outboard of n = 0.5 is shown compared with the solution 

given by Lundry (ref. 10) at L/s = 0. Results also compare well with a 

solution given by Mangler (ref. 8). The current code cannot handle vertical 

fences (1/s > 0), but this capability could he added. 

In figures 8 and 9 results for wings having spanwise camber such that 

the wake is an arc of a circle are compared with an exact solution for such 

wakes by Cone (ref. 9). All results are from the constant downwash formula- 

tion of the optimization. Figure 8 compares the induced drag efficiency, and 

figure 9 shows the bound circulation values. The parameter B is defined as 

where d is the maximum vertical dimension due to the spanwise camber. A 

value of B = 0 corresponds to a flat wing, and B = 1.0 corresponds to a semi- 

circular wing. Present results with NT = 25 again display an accuracy 

comparable to that of the method of reference 14 with 100 discrete wake 

trailing vortices. 

CONCLUSIONS 

The current drag optimization techniques assuming a piecewise linearly 

varying wake vortex sheet strength agree well with each other and with 

available exact solutions for a variety of Trefftz plane wake shapes. 

Agreement for overall drag efficiency factors and bound circulation distri- 

butions is generally better than one percent for on the order of 25 to 50 

wake segments. Computational times generally run from 1 to 10 seconds on 

a CDC Cyber 173 machine. Accuracy of the present theory is approximately 

four to five times better than a discrete trailing vortex theory using the 

same number of unknowns and equal spacing of the wake segments. Cosine 

wake segment spacing leads to a further increase in accuracy. 
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APPENDIX 

EVALUATION OF INTEGRALS IN DRAG EXPRESSION 

The following is a compilation of the integrals utilized in the 

evaluation of the drag expression [eq. (6)] in the text, which are not generally 

available in integral tables. They have been evaluated through use of the 

MACSYMA symbolic manipulation language (ref. 12), and are repeated here for 

completeness. 

/ 

S 

1. Integrals of the type nn bl(b2 + Eh + D)& depend upon 

-S 

whether E2 - 4D is positive, negative or zero. Results for all three are 

given, starting with E2 - 4D > 0. For this case 

J 
S 

tn(h2 + Ed -I- D)& = 

--s 

+ s -en (2 + Es + D)(s2 - Es + D) 1 - 4s 

s2 + Es -k D +$j/E2 - 4Dk% -2s -q=+ E 

2 -Es+D -2s +dG+ E 

S 

s 
A &?(A2 + Eh + Dldh = $E 

-S 

- Ln 
-2s - dG+ E 

-2s + d=+ E 
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J 
S 

62 &(h2 + E,J + D)a = 6 E4 - 5DE2 + 4D2 

-s 

.-2s -dG+E 

+ 'f-2, +dz + E) 

S.3 
+3- h(s2 f Es + D) k2 - Es + D) 1 

4s3 --- 
9 $(E 2 - 2D)s 

- Ln 

+ E4 - 4D:2 + 2D2 h (I:;::~:) 

For E2 - 4D = 0, 

25 



s 

S 

efi(h2 + EL4 + D)dh = s &Z (s2 + Es + D) (s2 - ES + D) 
-s 

/ 

S 

6 tfl(h2 + Eh + D)dh = $ tfl 
-s 

+ Es 

/ 

S 

h2 tn(h2 + Eh + D)dh = $.&I Ls2 + Es + D)(s2 - Es + D) 
-s [ 1 

+ (E4 - 5DE2 + 4D2) 

( 

1 1 --- 
3 E + 2s E - 2s > 

+ + - $)tn(; ; ;:)- $ - $(E2 - 2D)s 

h3 Ln(n2 S.4 + Eh -c D)dh = 4 b'l + E4 - 4DE2 + 2D2 . 
4 

.,,(; ; ;;)+ (“5 - “““6” + y. 

1 1 Es3 . 
G--z- E + 2s 

+ - - 7 (3D - E2) 
6 

For E2 -4D<O 
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/ 

S 
&(h2 + Eh + D)eM L shZ(s2 + Es + D)(s2 - Es + D) 

--s 

s 

S 

h Lvl(h2 + Eh + D)dA = 
-s 

J 
S 

h2 b(h2 + Eh + D)dh = 
-s 

- 2D) + E4 - 5DE2 + 4D2 

I- 
+ $&I (s2 + ES + D)(S2 

1 
- Es + D) 1 
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s 

S 

A3 bZ(h2 + E4 + D)dh = E4 - 4DE2 + 2D2 en 
8 

-S 

+ $Ln s2 + Es + D 

S2 -Es+D 

+ - E5 + 6DE3 - 8D2E 

- tan-l 93D - E2) 

2. Integrals of the type 

tan-l dh are in general replaced by approximate 

integrals 

I 

s hn(Klh2 + K2h + Kg) 
dn, where the Kl, K2, K3 are chosen to force 

-s IR + Thl 

the quadratic approximation to the inverse tangent function through the exact 

integrand at s = -s, 0, fs. Hence, the integrals are evaluated as follows: 

For n = o, 

+ K2h + Kg 

IR + Th( 

(K3T2 - K2RT + K1R2) 
dh= Ln 

T3 

+ 5 (2K2T - 2KlR) 
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for n = 1, 

J 

s (Klh2 + K2h + K3) (K3RT2 - K2R2T + KlR3) 
6 &i Ln 

-S ]R + Th] T4 

+ -(6K3T2 
2Kl 

3T3 
- 6K2RT + 6KlR2) + 3~ s3 

for n = 2, 

J 
S 

h2 
(K1A2 + K2h + K3) (K3R2T2 - K2R3T + K1R4) 

dh= 
IR + Th[ T5 -s 

S3 + -(4K2T 
6~~ 

- 4KlR) + 2s l 

T4 

. ( - K3RT2 + K2R2T - K1R3) 

for n = 3, 

J S 
h3 

&A2 + K2h + K3) (K3R3T2 - K2R4T + K,R5) 
dh= . 

-s IR + Thl T6 

-I- .3 (2K3T2 
3T3 

- 2K2RT + 2K,R2) 

+ 2s (K3T2R2 
T5 

- K2R3T + K,R4) 
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for n = 4, 

s 

S 
h4 

(Kh2 + K2h + K3) (KARATS - K2R5T + K1R6) 
dA= . 

-s IR + Thl T7 

(K2T - KlR) 
. h S5 

5~~ 

(- K3RT2 + K2R2T - K1R3) 
+2 . 

3T4 

. (d +F) 

When T = 0 and R # 0, the integrals are evaluated analytically at 

n = 0, 

J s1 - tan-l 
--s I4 

4B2s2 - 4Bcs + R2 + c2 

4B2s2 + 4Bcs + R2 t c2 

+ L(t-n-l(’ iRyBs) - taIl-1 (c yRyBs)) 
244 

+ k (tan-l (' ;R;Bs)+ tan-'(' yR;Bs)) 

n = 1, 
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s n 
J- tan-l dh= C ln + 4Bcs + R2 + c2 S -- 

--s I4 8~~ - 4Bcs + R2 + c2 2B 

+ (r12yRy) (tan-l(' iR;"') 

- tane'(c iRyBs)) + -$ (tan-I(' iRyBs) 

- tan-l c - 2Bs 

( )! I4 

n = 2, 

s 

S 

-S 5 tan-'(c iRyM)a = -$ (tan-' (' iRyBs) + tan-l (c yR;Bs)) 

+ : 3R2c - c3 cs 

3B2 24B31Rj 
(tanel(c yRyBs) 

- tan-l 

l kh 

4B2s2 + 4Bcs + R2 + c2 

4B2s2 - 4Bcs + R2 + c2 
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n = 3, 

d?l=c(R2-c2) Ln 4B2s2-4BcsfR2+c2 

32B4 4B2s2 + 4Bcs -I- R2 + c2 

+ (R4 - 6c2R2 + c4) 

64B41RI 
(tan-l (' yRyBs) 

- tan-l(c iRyBs))+ 5 (tan-l(' iRyBs) 

- tan-l S.3 (3c2 - R2)s --- 
12B 16B3 

n = 4, 

.I- S 

Ltan-'(c iRyM)dA = 5 kansl(c ;R;Bs)+ tan-l(‘ iRyBs)) 
--s I4 

+ (5cR4 - 10c3R2 + c5) 

160B51~I 
(Lan-'(' iRyBs) 

- tan-l 

+ R4 - 10c2R2 + 5c4 . 
320B5 

continued 
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- en 4B2s2 - 4Bcs + R2 + c2 

4B2s2 + 4Bcs + R2 + c2 

C3 
+ 

- cR2 
S 

10B4 

When both R and T = 0, integrals of the following forms are evaluated as: 

n = 0, 

-J S 
dh 

-s c + 2B4 = - kg:" :::) 

n = 1, 

n = 2, 

-s 

S 
h2dh 

c+2BA= 
-S 

n = 3. 

-J 
S 

h3dh 

-S 
c + 2Wl 

n = 4, 

-J 

S 
h4dA 

-S 
c + 2IM 
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Figure 1. Trefftz plane geometry used in the present method. 
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Figure 2. Effect of optimizing procedure and spacing 
on convergence of the induced drag 
efficiency for planar wings. 

37 



w CD 

25 

20 

15 

v 

7 10 

5 

Oi 

OPTIMIZING PROCEDURE SPACING 

o- YUNK'S CRITERION 

a- MUNK'S CRITERION 

EQUAL 

COSINE 

o- DIRECT OPTIMIZATION 

A- DIRECT OPTIMIZATION 

EQUAL 

COSINE 

---EXACT, & =rl 
Y $7 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

rl 

Figure 3. Effect of optimizing procedure and spacing on the wake strength 
for planar wings, NT = 10. 
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Figure 4. Convergence of induced drag optimization 
using Munk's criterion for planar wings. 
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Figure 7. Induced drag efficiency for a wing with 
outboard dihedral, @ = 30°, TJ = 0.5. 
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Figure 8. Induced drag efficiency factor for circular arc dihedral wings. 
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